Barocaloric materials hold great promise for next-generation solid-state cooling devices because of their green and efficient cooling performance. The insights into low-pressure-driven barocaloric materials are expected to pave the way for the widespread application of barocaloric refrigeration technology. Here, we reveal the low-pressure-driven large barocaloric effect (BCE) modulated by geometrical frustrations in Mn3Pt. The highest sensitivity to pressure of Mn3Pt in metal BCE materials results in an excellent temperature-change strength of 9.77 K 100-1 MPa-1. Neutron powder diffraction and first-principles calculations point out the dual effect of geometrical frustration on modulating the unusual BCE, which not only induces giant volume expansion by inspiring strong spin fluctuation and magnetic moment but also enhances the sensitivity of magnetic phase transition. The model of the dual effect of geometrical frustration in magnets with geometrical frustration is established, which will promote the research progress of barocaloric refrigeration devices.
Read full abstract