Unconventional gas shales are described as organic-rich, fine-grained reservoirs and are typically dominated by clays. The shale gas reservoirs have received great attention in the past decade, because of their large reserves as well as recent technical advances in developing these resources. Accordingly, there are increasing demands to understand the petrophysical and mechanical properties of these gas shale rocks. The mineral composition and the presence of organic matter can influence not only the distribution of pores and fluid saturation, but also the effectiveness of stimulation. The geomechanical study of a shale gas reservoir is useful in identifying the intervals which can be fractured effectively. The estimation of geomechanical properties from well logs and their calibration with laboratory-derived properties on cores has been attempted in the present paper for Cambay shale of Cambay Basin, India, which is very much prospective for shale gas exploration. Powder X-ray diffraction (XRD) analysis was carried out on drill cutting samples in the study area, and it was seen that the major mineralogy is quartz, kaolinite, pyrite, calcite and mixed clays. Petrographic observation and Fourier transform infrared spectroscopy (FTIR) results also conform to the same minerals which are identified from XRD. Geomechanical properties (Young’s modulus, Poisson’s ratio, brittleness) of Cambay shale derived from sonic logs and density logs and are validated with the available predicted brittleness index (BI) from mineralogy through petrographic observation, XRD and FTIR interpretation results. Modeling using petrel software with log data and P-impedance was carried out and a relation between log results and P-impedance volume was established. The study concluded that (BI) varies from 0.44 (less brittle) to 0.75 (highly brittle) using both mineralogy and sonic logs. This study successfully identified the areas of high BI in the study area which can be an input for effective stimulation for shale gas exploration and exploitation.
Read full abstract