ABSTRACT With geologic data from over 950 boreholes, Yucca Flat basin, residing on the Nevada National Security Site, has excellent borehole control on stratigraphy. These data were used to create a Geologic Framework Model (GFM) of the basin. Of these boreholes, 188 have corresponding downhole seismic survey data, which were used to determine average P-wave velocities of the geologic units and create a GFM seismostratigraphic model (GFM-SS). With the acquisition of six new active-source large-N datasets in Yucca Flat, we can now quantitatively assess the accuracy of the GFM-SS previously controlled only by borehole data. For each of the six datasets, we subset the GFM to the region of interest and create a forward model of P-wave travel times for the GFM-SS given the large-N source-receiver geometries. We first made trial-and-error adjustments to the unit velocities (while keeping the layer geometry intact) to improve the travel-time residuals. We then implemented a simulated annealing approach to find the optimal velocity model for each dataset. Our results indicate that the borehole-controlled model overestimates alluvium velocities across Yucca Flat. This result persists even when we make smaller GFM-SS models that are local to individual large-N experiments. We hypothesize that this result is a combination of shorter ray paths and the resulting lack of interaction with large-scale features (such as faults), as well as less attenuation of high frequencies in the borehole data. Both the current GFM-SS and the updated model based on median velocities that we present here overgeneralize local unit velocities, which can be quite heterogeneous in Yucca Flat.