Black sand along the Red Sea is often composed of volcanic minerals and heavy minerals. The Red Sea region is known for its unique geological features, and black sand beaches can be found in various areas along its shores. The study presents a comprehensive semi-quantitative chemical analysis of black sand samples collected from various locations along the red sea, revealing significant variations in their elemental compositions. The main oxides were identified in each sample, determined through X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses, indicate diverse mineralogical compositions. The spatial distribution of minerals at each site is depicted through mapping. Additionally, Fourier-transform infrared (FTIR) spectra offer information on the functional groups present in the samples, revealing the existence of hydroxyl groups, aliphatic compounds, and adsorbed water molecules. For Qusier-Elsharm Alqbly, Safaga, Marsa Alam, Gabal Alrosass, Hurghada Titanic, Hurghada Elahiaa, Gemsa, and Ras Elbehar samples, the results highlight the presence of various minerals, such as Quartz, Calcite, Titanium Dioxide, Magnetite, Hematite, Aluminum Oxide, Zirconium Dioxide, Chromium (III) Oxide, and others, providing insights into the geological characteristics of each location. The differences in mineral content among the examined sites are linked to the geological and mineralogical makeup of the source rocks upstream and midstream in the basins that discharge into the surveyed regions. So, variations in black sand concentrations among different locations offer insights into the geological and mineralogical diversity of the studied areas along the Red Sea coast. This study addresses the existing knowledge gap by focusing on the preliminary exploration and description of the occurrence, distribution, and composition of black sand along the Red Sea in Egypt. whereas the results provide valuable insights into the geological diversity of black sand deposits in the surveyed areas, underscoring the need for additional research and interpretation of these variations. Therefore, the in-depth examination of mineralogical composition and crystal structures establishes a foundation for future investigations in the field of geology and earth sciences.