Sediments (568) and suspended particulate matter (SPM, 302 samples) of the southern German Bight and the adjacent tidal flat areas were analysed for selected major elements (Al, Fe, K), trace metals (Mn, Pb), and 206Pb/ 207Pb ratios using XRF, ICP–OES, ICP–MS. For selected samples a leaching procedure with 1 M HCl was used to estimate the Pb fraction associated with labile phases (e.g. Mn/Fe-oxihydroxide coatings) in contrast to the resistant mineral matrix. Enrichment factors versus average shale (EFS) reveal elevated Pb contents for all investigated sediments and SPM in the following order: Holocene tidal flat sediments (HTF, human-unaffected) <recent tidal flat sediments (RTF) <Helgoland Island mud hole sediments (MH) <nearshore SPM (SPM concentration>5 mg l −1) < offhore SPM (<5 mg l −1). Besides pollution, RTF contain elevated amounts of natural Pb-rich materials (K-feldspars and heavy minerals) due to a man-made high-energy environment (dike building) in comparison to HTF. 206Pb/ 207Pb ratios of RTF (1.192±0.019) are similar to the local geogenic background, determined from HTF (1.207±0.008). In contrast, Pb isotope ratios of nearshore SPM (1.172±0.007) and offshore SPM (1.166±0.012) show a distinct shift towards the anthropogenic/atmospheric signal of 1.11–1.14. This difference between RTF and SPM supports the assumption of low deposition rates of fine material in the intertidal systems. As the 206Pb/ 207Pb ratios of SPM do not reach the pure anthropogenic signal, the adsorbed Pb fraction was examined (leaching). However, the leachates also contained large amounts of geogenic Pb (SPM ≈40%, recent sediments ≈60%). The authors assume that the uptake of natural Pb occurs in nearshore waters, presumably in the turbid intertidal systems. Possible sources for dissolved Pb are mobilisation during weathering (geogenic signal) and dissolution of oxihydroxide coatings with subsequent release from porewaters, and unspecific riverine input. Comparatively small parts of SPM leave the coastal water mass and reach the open North Sea. This process therefore leads to a decontamination of the tidal flat sediments. Due to more pronounced atmospheric input, the offshore SPM becomes enriched in anthropogenic Pb as indicated by decreasing 206Pb/ 207Pb ratios with increasing distance from the coast.
Read full abstract