The climate science community and the United Nations’ Intergovernmental Panel on Climate Change have misinformed world governments by failing to acknowledge tropospheric particulate geoengineering that has been ongoing with ever-increasing duration and intensity for decades, and by treating global warming solely as a radiation-balance issue, which has resulted in a seriously incomplete understanding of the fundamental factors that affect Earth’s surface temperature. Here we review the consequences of tropospheric particulate heating by absorption of short- and long-wave solar radiation and long-wave radiation from Earth’s surface. Generally, black carbon absorbs light over the entire solar spectrum; brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light; iron oxides are good absorbers, the most efficient being magnetite. Pyrogenic coal fly ash, both from coal burning and from tropospheric jet-spraying geoengineering (for military purposes and/or climate engineering), contains carbon and iron oxides, hematite and magnetite. The recently published climate-science paradigm shift discloses that the main cause of global warming is not carbon dioxide heat retention, but particulate pollution that absorbs radiation, heats the troposphere, and reduces the efficiency of atmospheric-convective heat removal from Earth’s surface. In addition to the World War II data, three other independent lines of supporting evidence are reviewed: (1) Passage overhead of the Mt. St. Helens volcanic plume; (2) Radiosonde and aethalometer investigations of Talukdar et al.; and, (3) convection suppression over the tropical North Atlantic caused by the Saharan-blown dust. The risks associated with the placement of aerosol particulates into the stratosphere, whether lofted naturally, inadvertently, or deliberately as proposed for solar radiation management, poses grave risks, including the destruction of atmospheric ozone. To solve global warming humanity must: (1) Abruptly halt tropospheric particulate geoengineering; (2) Trap particulate emissions from coal-fired industrial furnaces (especially in India and China) and from vehicle exhaust; and, (3) Reduce particulate-forming fuel additives.
Read full abstract