Urban expansion encroaches on green spaces and weakens ecosystem services, potentially leading to a trade-off between ecological conditions and socio-economic growth. Effectively coordinating the two elements is essential for achieving sustainable development goals at the urban scale. However, few studies have measured urban–ecological linkage in terms of trade-off. In this study, we propose a framework by linking the degraded ecological conditions and urban land use efficiency from a return on investment perspective. Taking a rapidly expanding city as a case study, we comprehensively quantified urban–ecological conditions in four aspects: urban heat island, flood regulating service, habitat quality, and carbon sequestration. These conditions were assessed on 1 km2 grids, along with urban land use efficiency at the same spatial scale. We employed the slack-based measure model to evaluate trade-off efficiency and applied the geo-detector method to identify its driving factors. Our findings reveal that while urban–ecological conditions in Zhengzhou’s periphery degraded over the past two decades, the inner city showed improvement in urban heat island and carbon sequestration. Trade-off efficiency exhibited an overall upward trend during 2000–2020, despite initial declines in some inner city areas. Interaction detection demonstrates significant synergistic effects between pairs of drivers, such as the Normalized Difference Vegetation Index and building height, and the number of patches of green spaces and the patch cohesion index of built-up land, with q-values of 0.298 and 0.137, respectively. In light of the spatiotemporal trend of trade-off efficiency and its drivers, we propose adaptive management strategies. The framework could serve as guidance to assist decision-makers and urban planners in monitoring urban–ecological conditions in the context of urban expansion.
Read full abstract