In this study, the degradation kinetics and degradation mechanism of 23 trace organic pollutants (TrOCs) in the secondary effluent of sewage by the combined membrane-UV/chlorine process were investigated, and the halogenated disinfection by-products (X-DBPs) in the combined process were investigated and its generation potential (X-DBPsFP), and the cytotoxicity and genotoxicity of the treated water samples were also evaluated. The results showed that membrane pretreatment could effectively promote the degradation of TrOCs in UV/chlorine system, and nanofiltration (NF) was more effective than ultrafiltration (UF). Compared with UF, NF intercepts more dissolved organic matter (DOM), thus weakening the light shielding effect, chlorine consumption and radical quenching to a greater extent. It is found that the degradation mechanism of TrOCs can be divided into the following four categories: Ho˙ dominated, RHS dominated, chlorine and RHS jointly dominated and chlorine dominated. Membrane pretreatment can well reduce the formation of X-DBPs, among which UF and NF reduce the formation of haloacetamide (HAMs) and trihalomethanes (THMs) most significantly, while NF reduces the formation of X-DBPs and X-DBPsFP and the toxicity of water samples much stronger than UF. In addition, NF UV/chlorine can significantly remove the precursors of X-DBPs, so as to effectively control the enhancement of cytotoxicity and genotoxicity of water samples in the post chlorination process. The research results promote the development of advanced sewage treatment technology and provide theoretical guidance for related research.
Read full abstract