Simple SummaryThis study aimed to evaluate the consistency of different methodologies and sources of information used to estimate inbreeding coefficients in small populations by analyzing the correlation between them in the Holstein population of Mexico and to choose the best option in order to aid breeding programs to improve the productive traits of Holstein cattle in small-specialized populations.This study aimed to identify inbreeding coefficient (F) estimators useful for improvement programs in a small Holstein population through the evaluation of different methodologies in the Mexican Holstein population. F was estimated as follows: (a) from pedigree information (Fped); (b) through runs of homozygosity (Froh); (c) from the number of observed and expected homozygotic SNP in the individuals (Fgeno); (d) through the genomic relationship matrix (Fmg). The study included information from 4277 animals with pedigree records and 100,806 SNP. The average and standard deviation values of F were 3.11 ± 2.30 for Fped, −0.02 ± 3.55 for Fgeno, 2.77 ± 0.71 for Froh and 3.03 ± 3.05 for Fmg. The correlations between coefficients varied from 0.30 between Fped and Froh, to 0.96 between Fgeno and Fmg. Differences in the level of inbreeding among the parent’s country of origin were found regardless of the method used. The correlations among genomic inbreeding coefficients were high; however, they were low with Fped, so further research on this topic is required.
Read full abstract