Genomic sequencing has driven precision-based oncology therapy; however, genetic drivers remain unknown or non-targetable for many malignancies, demanding alternative approaches to identify therapeutic leads. Ependymomas comprise histologically similar tumor entities driven by distinct molecular mechanisms, such as fusion oncoproteins, genome-wide chromosomal instability, or disruption of DNA methylation patterns. Despite these differences, ependymomas resist chemotherapy and lack available targeted agents for clinical trial development. Based on our previous findings, we hypothesized that mapping chromatin landscapes and super enhancers (SE) could uncover transcriptional dependencies as targets for therapy (Mack, Pajtler, Chavez et al., Nature, 2018). To functionally test the requirement of these SE genes for ependymoma cellular growth, we designed a pooled RNA interference screen against 267 SE associated genes. Our screen was performed in one C11ORF95-RELA-fusion model and two PF-EPN-A models as controls in biological triplicates. As an indication that our screen was successful, positive controls scored among lead hits including KIF11, BUB1B, PHF5A and MYC. Importantly, we identified many subtype specific dependencies in both C11ORF95-RELA-fusion and PF-EPN-A models, thus revealing novel pathways that potentially govern subgroup-specific ependymoma cell growth. Further, several candidates detected across all ependymoma lines were also identified as pan-cancer dependencies or glioma/glioblastoma specific essential genes from the DepMap Cancer Dependency Gene Resource. Our findings reveal novel targets and pathways that are essential for ependymoma cell growth, which may provide new insight into therapeutic strategies against these aggressive brain tumors.