We propose a hybrid algorithm of two fuzzy genetics-based machine learning approaches (i.e., Michigan and Pittsburgh) for designing fuzzy rule-based classification systems. First, we examine the search ability of each approach to efficiently find fuzzy rule-based systems with high classification accuracy. It is clearly demonstrated that each approach has its own advantages and disadvantages. Next, we combine these two approaches into a single hybrid algorithm. Our hybrid algorithm is based on the Pittsburgh approach where a set of fuzzy rules is handled as an individual. Genetic operations for generating new fuzzy rules in the Michigan approach are utilized as a kind of heuristic mutation for partially modifying each rule set. Then, we compare our hybrid algorithm with the Michigan and Pittsburgh approaches. Experimental results show that our hybrid algorithm has higher search ability. The necessity of a heuristic specification method of antecedent fuzzy sets is also demonstrated by computational experiments on high-dimensional problems. Finally, we examine the generalization ability of fuzzy rule-based classification systems designed by our hybrid algorithm.
Read full abstract