Carbapenems are used as last-resort drugs to treat infections caused by multidrug-resistant bacteria. Despite the increasing number of reports of carbapenem-resistant Enterobacteriaceae (CRE), there is still limited information on their distribution or prevalence in the environment. Our aim was to assess the occurrence of CRE in the Lis river (Portugal) and to characterize the genetic platforms linked to carbapenemase genes. We collected six water samples from sites near a wastewater treatment plant (n = 4 samples) and livestock farms (n = 2). Twenty-four CRE were characterized by BOX element-polymerase chain reaction (BOX-PCR), and thirteen representative isolates were analysed by Pulsed-Field Gel Electrophoresis (PFGE) and by sequencing the 16S rRNA gene. Antimicrobial susceptibility testing, PCR screening for carbapenemase-encoding genes, conjugation experiments and plasmid analysis were performed. Four isolates were chosen for whole-genome sequencing. All water samples contained CRE (4.0 CFU/mL on average). Representative isolates were multidrug-resistant (resistant to ciprofloxacin, trimethoprim-sulfamethoxazole and to all β-lactams tested) and were identified as K. pneumoniae, Enterobacter and Citrobacter. Isolates carried plasmids and harboured carbapenemase-encoding genes: blaKPC-3 in K. pneumoniae (n = 9), blaNDM-1 in Enterobacter (n = 3) and blaGES-5 in Citrobacter (n = 1). Conjugation experiments were successful in two Klebsiella isolates. Enterobacter PFGE profiles grouped in one cluster while Klebsiella were divided in three clusters and a singleton. Whole-genome sequencing analysis revealed blaGES-5 within a novel class 3 integron (In3-16) located on an IncQ/pQ7-like plasmid in Citrobacter freundii CR16. blaKPC-3 was present on IncFIA-FII pBK30683-like plasmids, which were subsequently confirmed in all K. pneumoniae (n = 9). Furthermore, blaKPC-3 was part of a genomic island in K. pneumoniae CR12. In E. roggenkampii CR11, blaNDM-1 was on an IncA/C2 plasmid. The carbapenemase-encoding plasmids harboured other resistance determinants and mobile genetic elements. Our results demonstrate that Lis river is contaminated with CRE, highlighting the need for monitoring antibiotic resistance in aquatic environments, especially to last-resort drugs.