BackgroundThe body conformation traits of dairy cattle are closely related to their production performance and health. The present study aimed to identify gene variants associated with body conformation traits in Chinese Holstein cattle and provide marker loci for genomic selection in dairy cattle breeding. These findings could offer robust theoretical support for optimizing the health of dairy cattle and enhancing their production performance.ResultsThis study involved 586 Chinese Holstein cattle and used the predicted transmitting abilities (PTAs) of 17 body conformation traits evaluated by the Council on Dairy Cattle Breeding in the USA as phenotypic values. These traits were categorized into body size traits, rump traits, feet/legs traits, udder traits, and dairy characteristic traits. On the basis of the genomic profiling results from the Genomic Profiler Bovine 100 K SNP chip, genotype data were quality controlled via PLINK software, and 586 individuals and 80,713 SNPs were retained for further analysis. Genome-wide association studies (GWASs) were conducted via GEMMA software, which employs both univariate linear mixed models (LMMs) and multivariate linear mixed models (mvLMMs). The Bonferroni method was used to determine the significance threshold, identifying gene variants significantly associated with body conformation traits in Chinese Holstein cattle. The single-trait GWAS identified 24 SNPs significantly associated with body conformation traits (P < 0.01), with annotation leading to the identification of 21 candidate genes. The multi-trait GWAS identified 54 SNPs, which were annotated to 57 candidate genes, including 39 new SNPs not identified in the single-trait GWAS. Additionally, 14 SNPs in the 86.84–87.41 Mb region of chromosome 6 were significantly associated with multiple traits, such as body size, udder, and dairy characteristics. Four genes—SLC4A4, GC, NPFFR2, and ADAMTS3—were annotated in this region.ConclusionsA total of 63 SNPs were identified as significantly associated with 17 body conformation traits in Chinese Holstein cattle through both single-trait and multi-trait GWAS analyses. Sixty-six candidate genes were annotated, with 12 genes identified by both methods, such as SLC4A4, GC, NPFFR2, and ADAMTS3, which are involved in pathways such as growth hormone synthesis and secretion, sphingolipid signaling, and dopaminergic synapse pathways. These findings provide potential genetic marker information related to body conformation traits for the breeding of Chinese Holstein cattle.
Read full abstract