Introduction: Antioxidant enzyme polymorphisms and innate immune receptors have been implicated in the development of various cancer forms. This study aimed to assess the potential association between toll-like receptor 9 (TLR9) polymorphisms and female susceptibility to breast cancer. Methods: Forty female breast cancer patients from Iraq and 20 healthy volunteers were enrolled in the study. Gene polymorphisms of TLR9 rs187084 (1237T/C) were analyzed using real-time polymerase chain reaction (RT-PCR). Additionally, a hormonal study was conducted, comparing breast cancer patients exposed to radiation with a control group. The levels of follicle-stimulating hormone (FSH), estradiol (E2), and progesterone were measured. Results: The analysis revealed a non-significant increase in the prevalence of TLR9 wild TT genotypes among breast cancer patients compared to healthy individuals (72.5% vs. 90%, respectively). Conversely, heterozygous CT genotypes were significantly higher in breast cancer patients compared to healthy women (22.5% vs. 10%, P<0.05). In the hormonal study, breast cancer patients exposed to radiation exhibited a significant increase in FSH levels (2.9 vs. 18.8 IU/ml), a significant decrease in E2 levels (0.232 vs. 0.910 pico/ml), and a significant increase in progesterone levels (0.910 vs. 0.732 nanogram/ml). Conclusion: The study concludes that TLR9 rs187084 (1237T/C) polymorphism variants play crucial roles in the susceptibility of Iraqi females to breast cancer. Furthermore, the observed hormonal disruptions in FSH, E2, and progesterone levels highlight potential contributors to breast cancer development, emphasizing the need for further exploration of genetic and hormonal factors in cancer susceptibility.
Read full abstract