Cachexia - a wasting disorder of adipose and skeletal muscle tissue - is the most common driver of poor prognosis in patients with advanced lung cancer. Parathyroid hormone-like hormone (PTHLH) is potentially a critical factor in cancer-associated cachexia. We previously showed that streptonigrin - an aminoquinone with antitumor effects - inhibited the interaction between TCF4 and TWIST1. This study aimed to determine the anti-cachectic performance of streptonigrin in lung cancer. We assessed the effect of streptonigrin on the interaction of TCF4 and TWIST1 using co-immunoprecipitation and a mammalian-two hybrid luciferase assay, which was confirmed by an in vitro GST pull-down assay using recombinant bHLH domain-containing TCF4 and TWIST1. We assessed the anti-cachectic effect of streptonigrin in vivo using an LLC1 cell-induced tumour-bearing mouse model. Changes in the degree of skeletal muscle and adipose tissue wasting were determined by measuring the weights of gastrocnemius and epidydimal white adipose tissue. Streptonigrin was found to inhibit the interaction of TCF4 with TWIST1 in a dose-dependent manner. The in vitro GST pull-down assay revealed that streptonigrin directly inhibited the interaction between TCF4 and TWIST1. The expression of PTHLH mRNA, which is transcriptionally regulated by the TCF4/TWIST1 complex in response to TGF-β1 signalling, was decreased in streptonigrin-treated lung cancer cells. Streptonigrin significantly decreased the expression of proteolysis-related genes in skeletal muscle and browning-related genes in white adipose tissues of LLC1-induced tumour-bearing mice. Streptonigrin exerts potent therapeutic effects on lung cancer-induced cachexia by suppressing TCF4/TWIST1-mediated PTHLH expression.