Alcoholism is a global socially significant problem and still remains one of the leading causes of disability and premature death. One of the main signs of the disease is the loss of cognitive control over the amount of alcohol consumed. Among the mechanisms of the development of this pathology, changes in neuroimmune mechanisms occurring in the brain during prolonged alcohol consumption and its withdrawal have recently become the focus of numerous studies. Ethanol consumption leads to the activation of neuroimmune signaling in the central nervous system through many subtypes of Toll-like receptors (TLRs), as well as release of their endogenous agonists (high-mobility group protein B1 (HMGB1), S100 protein, heat shock proteins (HSPs), and extracellular matrix degradation proteins). TLR activation triggers intracellular molecular cascades of reactions leading to increased expression of genes of the innate immune system, particularly, proinflammatory cytokines, causing further development of a persistent neuroinflammatory process in the central nervous system. This leads to death of neurons and neuroglial cells in various brain structures, primarily in those associated with the development of a pathological craving for alcohol. In addition, there is evidence that some subtypes of TLRs (TLR3, TLR4) are able to form heterodimers with neuropeptide receptors, thereby possibly playing other roles in the central nervous system, in addition to participating in the activation of the innate immune system.