Abstract Microorganisms encoding for the N2O reductase (NosZ) are the only known biological sink of the potent greenhouse gas N2O, and are central to global N2O mitigation efforts. Clade II NosZ populations are of particular biotechnological interest as they usually feature high N2O affinities and often lack other denitrification genes. We focus on the yet-unresolved ecological constraints selecting for different N2O-reducers strains, and controlling the assembly of N2O-respiring communities. Two planktonic N2O-respiring mixed cultures were enriched at low dilution rates under limiting and excess dissolved N2O availability to assess the impact of substrate affinity and N2O cytotoxicity, respectively. Genome-resolved metaproteomics was used to infer the metabolism of the enriched populations. Under N2O limitation, clade II N2O-reducers fully outcompeted clade I affiliates, a scenario previously only theorized based on pure-cultures. All enriched N2O-reducers encoded and expressed the sole clade II NosZ, while also possessing other denitrification genes. Two Azonexus and Thauera genera affiliates dominated the culture, and we hypothesize their coexistence to be explained by the genome-inferred metabolic exchange of cobalamin intermediates. Under excess N2O, clade I and II populations coexisted, yet proteomic evidence suggests that clade II affiliates respired most of the N2O, de facto outcompeting clade I affiliates. The single dominant N2O-reducer (genus Azonexus) notably expressed most cobalamin biosynthesis marker genes, likely to contrast the continuous cobalamin inactivation by dissolved cytotoxic N2O concentrations (400 μM). Ultimately, our results strongly suggest the solids dilution rate to play a pivotal role in controlling the selection among NosZ clades, albeit the conditions selecting for genomes possessing the sole nosZ remain elusive. We furthermore highlight the potential significance of N2O-cobalamin interactions in shaping the composition of N2O-respiring microbiomes.
Read full abstract