In this paper, we extend the well-known result “the predual of Hardy space \(H^1\) is VMO” to the product setting, associated with differential operators. Let \(L_i\), \(i = 1, 2\), be the infinitesimal generators of the analytic semigroups \(\{e^{-tL_i}\}\) on \(L^2({\mathbb {R}})\). Assume that the kernels of the semigroups \(\{e^{-tL_i}\}\) satisfy the Gaussian upper bounds. We introduce the VMO spaces VMO\(_{L_1, L_2}(\mathbb {R}\times \mathbb {R})\) associated with operators \(L_1\) and \(L_2\) on the product domain \(\mathbb {R}\times \mathbb {R}\), then show that the dual space of VMO\(_{L_1, L_2}(\mathbb {R}\times \mathbb {R})\) is the Hardy space \(H^1_{L_1^*, L_2^*}(\mathbb {R}\times \mathbb {R})\) associated with the adjoint operators \(L^*_1\) and \(L^*_2\).
Read full abstract