The reversibility and stability of aqueous Zn metal batteries (AZMBs) are largely limited by Zn dendrites and interfacial parasitic reactions. Herein, we propose a parallel modulation strategy to boost the reversibility of the Zn anode by introducing N,N,N’,N’-tetramethylchloroformamidinium hexafluorophosphate (TCFH) as an additive in the electrolyte. TCFH is composed of PF6− and TN+ with opposite charges. PF6− can spontaneously induce the in-situ generation of ZnF2 solid electrolyte interface (SEI) on the anode, which can improve the transport kinetics of Zn2+ at the interface, thus promoting the rapid and uniform deposition of Zn as well as inhibiting the growth of dendrites. In addition, TN+ is enriched at the anode surface during Zn deposition through the anchoring effect, which brings a reconfiguration of the ion/molecule distribution. The anchored-TN+ reduces the concentrations of H2O and SO42−, sufficiently restraining the parasitic reaction. Thanks to the dual-phase interface engineering constructed of PF6− and TN+ in parallel, the symmetric cell with the proposed electrolyte survives long cycling stability over 750 h at 20 mA cm−2, 10 mAh cm−2. This study offers a distinct viewpoint to the multidimensional optimization of Zn anodes for high-performance AZMBs.