Abstract

Efficient structural optimization remains integral in advancing lightweight structures, particularly concerning the mitigation of environmental impact in air transportation systems. Varying levels of detail prove useful for different applications and design phases. The lightworks framework presents a modular approach, for the consideration of individual design parameterizations and structural solvers for the numerical optimization of thin-walled structures. The framework provides the combination of lightweight fibre composite design and the incorporation of stiffeners for a gradient-based optimization process. Therefore, an analytical stiffener formulation is implemented in combination with different continuous composite material parameterizations. This approach allows the analysis of local buckling modes, as well as the consideration of load redistribution between stringer and skin. The flexibility achieved in this way allows a tailored configuration of the optimization problem to the required level of complexity. A verification of the framework’s implementation is carried out using established literature results of a simplified unstiffened wing box structure, where a very good agreement is shown. The accessibility of solvers with different fidelity through a generic solver interface is demonstrated. Furthermore, the usage of the implemented continuous composite parameterizations as design variables is compared in terms of computational performance and mass, providing different advantages and disadvantages. Finally, introducing stringer into the wing box use case demonstrates a 38% mass reduction, showcasing the potential of the inline optimization of stiffeners.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call