Abstract
Non-uniform rational B-spline (NURBS) has been widely used as an effective shape parameterization technique for structural optimization due to its compact and powerful shape representation capability and its popularity among CAD systems. The advent of NURBS based isogeometric analysis has made it even more advantageous to use NURBS in shape optimization since it can potentially avoid the inaccuracy and labor-tediousness in geometric model conversion from the design model to the analysis model. Although both positions and weights of NURBS control points affect the shape, until very recently, usually only control point positions are used as design variables in shape optimization, thus restricting the design space and limiting the shape representation flexibility. This paper presents an approach for analytically computing the full sensitivities of both the positions and weights of NURBS control points in structural shape optimization. Such analytical formulation allows accurate calculation of sensitivity and has been successfully used in gradient-based shape optimization. The analytical sensitivity for both positions and weights of NURBS control points is especially beneficial for recovering optimal shapes that are conical e.g. ellipses and circles in 2D, cylinders, ellipsoids and spheres in 3D that are otherwise not possible without the weights as design variables.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have