Rigid foldable origami enables smooth and precise folding without stretching or bending its constituent panels and is promising for applications such as reprogrammable matter, self-folding machines, reconfigurable antennas, and deployable spacecraft. The diverse range of potential applications necessitates the need for the design and detailed analysis of different rigid-foldable origami structures, especially those with intricate motion modes. In this paper, we introduce a rigid-foldable spiral origami design that features a compression-torsion coupled motion mode. This design exhibits rich static and dynamic properties. Under static conditions, the compression-torsion coupled motion mode creates multiple self-locking positions and allows for the development of mechanical static diodes. Under dynamic conditions, the compression-torsion coupling effect in the spiral origami facilitates precise control of wave modes within the origami chain when impacted by a ball with a moderate initial velocity. In the case of large initial velocities of the ball, the spiral origami can function as a wave generator, producing rarefaction solitary waves or compressive solitary waves. The proposed spiral origami design provides an opportunity to explore new applications of rigid-foldable origami with compression-torsion coupling effects.
Read full abstract