The dual-reciprocating drill (DRD) is a low-mass alternative to traditional drilling techniques biologically inspired by the wood wasp ovipositor, which is used to drill into wood in order to lay its eggs. The DRD reciprocates two halves lined with backwards-facing teeth, enabling it to generate traction forces that reduce the required overhead penetration force. While previous research has focused on experimental testing of the drill’s operational and design parameters, numerical simulation techniques are being developed to allow the rapid testing of multiple designs, complementing and informing experimental testing campaigns. The latest DRD design iteration integrated a novel internal actuation mechanism and demonstrated the benefits of adding controlled lateral movements. This paper presents an exploration of how bit morphology affects drilling performance and a preliminary study of discrete element method (DEM) simulations for modelling DRD interactions in regolith. These have shown how regolith grain size and microscopic behaviour significantly affects the performance of different drill designs, and demonstrated how customisable drills can exploit the properties of various substrates. Two system prototypes are also being developed for the DRD’s third generation, each utilising novel actuation and sampling mechanisms. A final drill design will then be deployed from a planetary rover and perform the first DRD drilling and sampling operation.