Microspore embryogenesis technology allows plant breeders to efficiently generate homozygous micros-pore-derived breeding populations of oilseed rape (Brassica napus L.) without traditional generations of inbreeding. This study was conducted to compare the frequency distribution of microspore-derived population and single seed descent populations with respect to fatty acids of seed oil. Both microspore-derived populations and single seed descent populations were produced from each of three crosses made between selected parents containing contrasting amount of erucic, oleic, linoleic and linolenic acids. The fatty acid content of F3 plants derived lines (F5 seed) developed by single seed descent was compared to that of microspore-derived populations. The means, ranges and distribution pattern of seed fatty acid contents were similar in both populations for each fatty acid studied, although a few heterozygous lines were observed in the single seed descent populations. The results indicated that microspore-derived population form random, homozygous F1 plant derived gametic arrays for all fatty acids evaluated. Selection for altered fatty acid composition in microspore-derived and single seed descent homozygous populations should be equally efficient, in the absence of linkage of traits investigated.
Read full abstract