In the present study, a green, scalable, and environmentally friendly approach was developed for the fabrication of Bi2S3-decorated CdS nanoparticles with an efficient hydrogen generation ability from the water. As a sulfur source, thiourea was used. The process was completed in two stages: mechanical activation and thermal annealing. The presence of spherical CdS nanoparticles and Bi2S3 nanorods in the CdS/Bi2S3 nanocomposite was confirmed and proved by XRD, Raman spectroscopy, SEM-EDS, and TEM. The synthesized CdS/Bi2S3 nanocomposites were evaluated for their photocatalytic hydrogen evolution capabilities. The CdS/Bi2S3 photocatalyst exhibited 25% higher photocatalytic activity compared to CdS, reaching a hydrogen evolution rate of 996.68 μmol h−1g−1 (AQE 0.87%) after 3.5 h under solar-light irradiation.
Read full abstract