Focusing on the remnant black holes after merging binary black holes, we show that ringdown gravitational waves of Population III binary black holes mergers can be detected with the rate of $5.9-500~{\rm events~yr^{-1}}~({\rm SFR_p}/ (10^{-2.5}~M_\odot~{\rm yr^{-1}~Mpc^{-3}})) \cdot ({\rm [f_b/(1+f_b)]/0.33})$ for various parameters and functions. This rate is estimated for the events with SNR$>8$ for the second generation gravitational wave detectors such as KAGRA. Here, ${\rm SFR_p}$ and ${\rm f_b}$ are the peak value of the Population III star formation rate and the fraction of binaries, respectively. When we consider only the events with SNR$>35$, the event rate becomes $0.046-4.21~{\rm events~yr^{-1}}~({\rm SFR_p}/ (10^{-2.5}~M_\odot~{\rm yr^{-1}~Mpc^{-3}})) \cdot ({\rm [f_b/(1+f_b)]/0.33})$. This suggest that for remnant black hole's spin $q_f>0.95$ we have the event rate with SNR$>35$ less than $0.037~{\rm events~yr^{-1}}~({\rm SFR_p}/ (10^{-2.5}~M_\odot~{\rm yr^{-1}~Mpc^{-3}})) \cdot ({\rm [f_b/(1+f_b)]/0.33})$, while it is $3-30~{\rm events~yr^{-1}}~({\rm SFR_p}/ (10^{-2.5}~M_\odot~{\rm yr^{-1}~Mpc^{-3}})) \cdot ({\rm [f_b/(1+f_b)]/0.33})$ for the third generation detectors such as Einstein Telescope. If we detect many Population III binary black holes merger, it may be possible to constrain the Population III binary evolution paths not only by the mass distribution but also by the spin distribution.