It is well known that the performance of an adaptive MIMO radar array fully depends on the precise steering control and is deteriorated by even a small scenario mismatch. This paper presents an advanced generalized sidelobe canceller (AGSC) based adaptive MIMO radar array beamformer with robustness against the effect due to scenario mismatches. A new signal blocking matrix is developed for effectively blocking the desired signal when the adaptive beamforming is performed under multiple scenario mismatches. The novelty of the new signal blocking matrix is that it contains two additional matrix components in addition to the conventional blocking matrix. The first one is a matrix made up of the basis orthogonal to some appropriately designed derivative constraint vector. It avoids the possible leakage of the desired signal due to scenario mismatches. The other one is a matrix made up of the dominant eigenvectors associated with the correlation matrix of the blocked data vector at the output of the first matrix component. It is employed to preserve all of the interference signals. As a result, the whole blocking operation can delete the desired signal and save the interference signals under multiple scenario mismatches. Hence, the AGSC based adaptive MIMO radar beamformer effectively deals with the performance degradation caused by scenario mismatches without resorting to any robust optimization algorithms. Performance analysis and complexity evaluation regarding the AGSC based adaptive MIMO radar beamformer are presented. Simulation results are also provided for confirmation and comparison.
Read full abstract