Abstract

In this paper, we propose a dual projection generalized sidelobe canceller (DPGSC) based on mixed subspace (MS) for ultrasound imaging, which aims to improve the speckle signal-noise-ratio (sSNR) and decrease the dark-region artifacts. A mixed signal subspace based on the correlation between the desired steering vector and the eigenvectors is constructed to further optimize the desired steering vector and the final weight vector. The simulated and experimental results show that the proposed method can greatly improve the speckle uniformity. In the geabr_0 experiment, the standard deviation of background and sSNR of MS-DPGSC can be improved by 48.07% and 58.49% more than those of eigenspace-based generalized sidelobe canceller (ESGSC). Furthermore, for a hyperechoic target, the maximal improvement of contrast ratio is 95.29%. In terms of anechoic cyst, the contrast-to-noise ratio of MS-DPGSC is increased by 123.08% than that of ESGSC. The rat mammary tumor experimental data show that the proposed method has better comprehensive imaging effect than traditional generalized sidelobe cancellers and ESGSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call