This article deals with half-linear dynamic equations that have two types of derivatives, and obtains sufficient conditions for all solutions to be non-oscillatory. The obtained results extend a previous Hille-Nehari type theorems for problems of dynamic equations. To prove our main result, we use a generalized Riccati inequality. As an application, we apply the main result to self-adjoint Euler type linear differential and difference equations with a changing sign coefficient. The equation selected for this application is of Mathieu type. For more information see https://ejde.math.txstate.edu/Volumes/2021/78/abstr.html
Read full abstract