We show that for any non-real algebraic number q, such that|q-1|>1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|q-1|>1$$\\end{document} or ℜ(q)>32\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Re(q)>\\frac{3}{2}$$\\end{document} it is #P-hard to computea multiplicative (resp. additive) approximation to the absolutevalue (resp. argument) of the chromatic polynomial evaluated at q on planar graphs. This implies #P-hardness for allnon-real algebraic q on the family of all graphs. We, moreover,prove several hardness results for q, such that |q-1|≤1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|q-1|\\leq 1$$\\end{document}.Our hardness results are obtained by showing that a polynomial timealgorithm for approximately computing the chromaticpolynomial of a planar graph at non-real algebraic q (satisfyingsome properties) leads to a polynomial time algorithm forexactly computing it, which is known to be hard by a resultof Vertigan. Many of our results extend in fact to the more generalpartition function of the random cluster model, a well-knownreparametrization of the Tutte polynomial.