Abstract
Abstract We introduce a derangement model of ligand-receptor binding that allows us to quantitatively frame the question “How can ligands seek out and bind to their optimal receptor sites in a sea of other competing ligands and suboptimal receptor sites?” To answer the question, we first derive a formula to count the number of partial generalized derangements in a list, thus extending the derangement result of Gillis and Even. We then compute the general partition function for the ligand-receptor system and derive the equilibrium expressions for the average number of bound ligands and the average number of optimally bound ligands. A visual model of squares assembling onto a grid allows us to easily identify fully optimal bound states. Equilibrium simulations of the system reveal its extremes to be one of two types, qualitatively distinguished by whether optimal ligand-receptor binding is the dominant form of binding at all temperatures and quantitatively distinguished by the relative values of two critical temperatures. One of those system types (termed “search-limited,” as it was in previous work) does not exhibit kinetic traps and we thus infer that biomolecular systems where optimal ligand-receptor binding is functionally important are likely to be search-limited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.