This paper involves an important statistical problem concerning forecasting in regression models in time series processes. It is well known that the most famous method of estimating and forecasting is the Ordinary Least Squares (OLS). OLS may be not the optimal in this context. So over the years many specialized estimation techniques have been developed, for example Generalized Least Squares (GLS). We are comparing the forecasting based on some estimators with the prediction using the GLS estimate. This comparison will be used by what is known as measures of forecast accuracy. We conduct an extensive computer simulation time series data, to make comparison among these methods. The similar forecasting criteria were developed and evaluated for the real data set on daily closing price in the Palestinian market index (Alquds Index). The data consists of 164 monthly observations and obtained from the website of the Palestine Stock Exchange. The main finding is that, for forecasting purposes there is not much gained in trying to identifying the exact order and form of the auto-correlated disturbances by using GLS estimation method. In addition, we noticed that the accuracy of forecasting using GLS method does not differ substantially than the other methods as Maximum Likelihood Estimation (MLE), Minimize Conditional Sum of Squares (CSS) and the combination of these two methods. Moreover, for parameter estimation, the GLS is nearly as efficient as the exact parameter estimation. On the other hand, the Ordinary Least Squares (OLS) method performs much less efficient than the other estimation methods and producing poor forecasting accuracy.