We evaluate the use of generalized empirical likelihood (GEL) estimators in portfolio efficiency tests for asset pricing models in the presence of conditional information. The use of conditional information is relevant to portfolio management as it allows for checking whether asset allocations are efficiently exploiting all the information available in the market. Estimators from the GEL family present some optimal statistical properties, such as robustness to misspecifications and better properties in finite samples. Unlike generalized method of moments (GMM) estimators, the bias for GEL estimators does not increase with the number of moment conditions included, which is expected in conditional efficiency analysis. Due to these better properties in finite samples, our main hypothesis is that portfolio efficiency tests using GEL estimators may have better properties in terms of size, power, and robustness. Using Monte Carlo experiments, we show that GEL estimators have better performance in the presence of data contaminations, especially under heavy tails and outliers. Extensive empirical analyses show the properties of the estimators for different sample sizes and portfolio types for two asset pricing models.
Read full abstract