Nonparametric density estimation aims to determine the sparsest model that explains a given set of empirical data and which uses as few assumptions as possible. Many of the currently existing methods do not provide a sparse solution to the problem and rely on asymptotic approximations. In this paper we describe a framework for density estimation which uses information-theoretic measures of model complexity with the aim of constructing a sparse density estimator that does not rely on large sample approximations. The effectiveness of the approach is demonstrated through an application to some well-known density estimation test cases.