Most organisms are defended against others, and defenses such as secondary metabolites in plants vary across species, individuals, and subindividual organs. Plant leaves show an impressive variability in quantitative defense levels, even within the same individual. Such variation might mirror physiological constraints or represent an evolved trait. One important hypothesis for the prevalence of defense variability is that it reduces herbivory due to non-linear averaging (Jensen’s inequality). In this study, we explore the conditions under which this hypothesis is valid and how it depends on the degree of specialization of the herbivores. We thus distinguish between generalists, non-sequestering specialists, and sequestering specialists that are able to convert consumed plant defense into own defense against predators. We propose a plant-herbivore model that takes into account herbivore preference, predation pressure on the herbivores, and the three herbivore specialization strategies we consider. Our computer simulations reveal that defense level variability reduces herbivory by all three populations when nutrient concentration is strongly correlated with defense level. If the nutrient concentration is the same in all leaves, the plant benefits from high defense level variability only when the herbivores are specialists that show a considerable degree of preference for leaves on which they perform best.
Read full abstract