This paper is devoted to the existence and non-existence of positive solutions to the following negative power nonlinear integral equation related to the sharp reversed Hardy–Littlewood–Sobolev inequality: fq−1(x)=∫ΩK(x)f(y)K(y)|x−y|n−αdy+λ∫ΩG(x)f(y)G(y)|x−y|n−α−βdy,f≥0,x∈Ω‾,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ f^{q-1}(x)= \\int _{\\varOmega }\\frac{K(x)f(y)K(y)}{ \\vert x-y \\vert ^{n-\\alpha }}\\,dy+ \\lambda \\int _{\\varOmega }\\frac{G(x)f(y)G(y)}{ \\vert x-y \\vert ^{n-\\alpha -\\beta }}\\,dy, \\quad f\\geq 0, x\\in \\overline{ \\varOmega }, $$\\end{document} where 0< q<1, alpha >n, 0<beta <alpha -n, lambda in mathbb{R}, Ω is a smooth bounded domain, K(x), G(x) are positive continuous functions in Ω̅. For Kequiv Gequiv 1, the existence and non-existence of positive solutions to the equation have been studied by Dou–Guo–Zhu (2019). In this paper we consider the existence and non-existence of positive solutions to the above integral equation with the general weight functions K(x), G(x).