The additivity of classical probabilities is only the first in a hierarchy of possible sum rules, each of which implies its successor. The first and most restrictive sum rule of the hierarchy yields measure theory in the Kolmogorov sense, which is appropriate physically for the description of stochastic processes such as Brownian motion. The next weaker sum rule defines a generalized measure theory which includes quantum mechanics as a special case. The fact that quantum probabilities can be expressed "as the squares of quantum amplitudes" is thus derived in a natural manner, and a series of natural generalizations of the quantum formalism is delineated. Conversely, the mathematical sense in which classical physics is a special case of quantum physics is clarified. The present paper presents these relationships in the context of a "realistic" interpretation of quantum mechanics.
Read full abstract