After presenting string-like solutions with a warp factor to Einstein's equations, we study localization of various spin fields on a string-like defect in a general space–time dimension from the viewpoint of field theory. It is shown that spin 0 and 2 fields are localized on a defect with the exponentially decreasing warp factor. Spin 1 field can be also localized on a defect with the exponentially decreasing warp factor. On the other hand, spin one-half and three-half fields can be localized on a defect with the exponentially increasing warp factor, provided that additional interactions are not introduced. Thus, some mechanism of localization must be invoked for these fermionic fields. These results are very similar to those of a domain wall in five space–time dimensions except the case of spin 1 field.
Read full abstract