This paper describes a formal optimization procedure for helicopter rotor blade designs which minimizes hover horsepower while assuring satisfactory forward flight performance. The approach is to couple hover and forward flight analysis programs with a general purpose optimization procedure. The resulting optimization system provides a systematic evaluation of the rotor blade design variables and their interaction, thus reducing the time and cost of designing advanced rotor blades. The paper discusses the basis for and details of the overall procedure, describes the generation of advanced blade designs for representative Army helicopters, and compares designs and design effort with those from the conventional approach which is based on parametric studies and extensive cross-plots.
Read full abstract