Temporomandibular joint (TMJ) disorders disproportionally affect females, with female to male prevalence varying from 3:1 to 8:1. Sexual dimorphisms in masticatory muscle attachment morphometry and association with craniofacial size, critical for understanding sex-differences in TMJ function, have not been reported. The objective of this study was to determine sex-specific differences in three-dimensional (3D) TMJ muscle attachment morphometry and craniofacial sizes and their impact on TMJ mechanics. Human cadaveric TMJ muscle attachment morphometry and craniofacial anthropometry (10Males; 11Females) were determined by previously developed 3D digitization and imaging-based methods. Sex-differences in muscle attachment morphometry and craniofacial anthropometry, and their correlation were determined, respectively using multivariate general linear and linear regression statistical models. Subject-specific musculoskeletal models of the mandible were developed to determine effects of sexual dimorphisms in mandibular size and TMJ muscle attachment morphometry on joint loading during static biting. There were significant sex-differences in craniofacial size (p = 0.024) and TMJ muscle attachment morphometry (p < 0.001). TMJ muscle attachment morphometry was significantly correlated with craniofacial size. TMJ contact forces estimated from biomechanical models were significantly, 23% on average (p < 0.001), greater for females compared to those for males when generating the same bite forces. There were significant linear correlations between TMJ contact force and both 3D mandibular length (R2 = 0.48, p < 0.001) and muscle force moment arm ratio (R2 = 0.68, p < 0.001). Sexual dimorphisms in masticatory muscle morphology and craniofacial sizes play critical roles in subject-specific TMJ biomechanics. Sex-specific differences in the TMJ mechanical environment should be further investigated concerning mechanical fatigue of TMJ discs associated with TMJ disorders.
Read full abstract