Abstract

BackgroundThe high survival clinical success rates of osseointegration are requisites for establishing a long-term biomechanical fixation and load-bearing potential of endosseous oral implants. The objective of this preclinical animal study was to evaluate the effect of surface microtopography and chemistry on the early stages of biomechanical rigidity with a sandblasted, dual acid-etched surface, with or without an additional chemical modification (SAE-HD and SAE, respectively), in the tibia of Beagle dogs.MethodsTwo pairs of implants, with the same macrogeometry but different surface technology ((a) dual acid-etched surface treatment with hydrochloric and sulfuric acid followed by microwave treatment and insertion in isotonic saline solution to increase hydrophilicity (SAE-HD) (test, n = 12) and (b) dual acid-etched surface (SAE) (control, n = 12)), were installed bilaterally in the proximal tibia of six Beagle dogs. In order to determine the effect of surface modification on biomechanical fixation, a test protocol was established to assess the torque and a complete set of intrinsic properties. Maximum removal torque (in N cm) was the primary outcome measure, while connection stiffness (N cm/rad) and removal energy (× 10−2J) were the secondary outcome measures and were assessed after 2 and 4 weeks in vivo. A general linear statistical model was used and performed for significant differences with the one-way ANOVA followed by Tukey post hoc test (P < 0.05).ResultsThe removal torque values did not reveal significant statistical differences between SAE-HD and SAE implants at any observation times (P = 0.06). Although a slight increase over time could be observed in both test and control groups. SAE-HD showed higher removal energy at 4 weeks (999.35 ± 924.94 × 10− 2 J) compared to that at 2 weeks (421.94 ± 450.58 × 10− 2 J), while SAE displayed lower values at the respective healing periods (P = 0.16). Regarding connection stiffness, there were no significant statistical differences neither within the groups nor over time. There was a strong, positive monotonic correlation between removal torque and removal energy (=0.722, n = 19, P < 0.001).ConclusionsIn this study, no significant differences were observed between the specific hydrophilic (SAE-HD) and hydrophobic (SAE) surfaces evaluated, in terms of biomechanical properties during the early osseointegration period.

Highlights

  • The high survival clinical success rates of osseointegration are requisites for establishing a long-term biomechanical fixation and load-bearing potential of endosseous oral implants

  • In this study, no significant differences were observed between the specific hydrophilic (SAE-HD) and hydrophobic (SAE) surfaces evaluated, in terms of biomechanical properties during the early osseointegration period

  • Recent in vitro analyses support the concept that hydrophilic surfaces upregulate the expression of angiogenic factors, activate the production of antiinflammatory factors, and downregulate the expression of pro-inflammatory cytokines by osteoblasts [16] and macrophage-like cells [17, 18], and regulate osteogenic differentiation and maturation of mesenchymal stem cells (MSCs) [10, 19, 20] and human osteoblast-like cells [21,22,23], increasing osteogenesis and decreasing osteoclastogenesis [11, 23, 24]

Read more

Summary

Introduction

The high survival clinical success rates of osseointegration are requisites for establishing a long-term biomechanical fixation and load-bearing potential of endosseous oral implants. The objective of this preclinical animal study was to evaluate the effect of surface microtopography and chemistry on the early stages of biomechanical rigidity with a sandblasted, dual acid-etched surface, with or without an additional chemical modification (SAE-HD and SAE, respectively), in the tibia of Beagle dogs. A superhydrophilic moderately rough titanium (Ti) implant surface (contact angle less than 5°) has been suggested to play a critical role during the early healing period [27] and establishment of a successful osseointegration [31] in preclinical in vivo studies. The potential of chemically modified superhydrophilic implant surfaces to enhance osteogenic differentiation and increase early bone apposition onto the implant may shorten the implant stability drop, occurring due to bone remodeling during the first few weeks of implantation [13]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.