Climate change is significantly altering Ethiopia’s weather patterns, causing substantial shifts in temperature and precipitation extremes. This study examines historical trends and changes in extreme rainfall and temperature, as well as seasonal rainfall variability across Ethiopia. In this study, we employed the Mann–Kendall test, Sen’s slope estimator, and empirical orthogonal function (EOF), with data from 103 stations (1994–2023). The findings provide insights into 16 climate extremes of temperature and precipitation by utilizing the climpact2.GUI tool in R software (v1.2). The study found statistical increases were observed in 59.22% of the annual maximum value of daily maximum temperature (TXx) and 77.67% of the annual maximum value of daily minimum temperature (TNx). Conversely, decreasing trends were found in 51.46% of the annual maximum daily maximum temperature (TXn) and 85.44% of the diurnal temperature range (DTR). The results of extreme precipitation found that 72.82% of yearly total precipitation (PRCPTOT), 73.79% of consecutive wet days (CWD), and 54.37% of the number of heavy precipitation days (R10mm) showed increasing trends. In contrast, at most selected stations, 61.17% of consecutive dry days (CDD), 55.34% of maximum 1-day precipitation (RX1day), 56.31% of maximum 5-day precipitation (RX5day), 66.02% of precipitation from very wet days (R95p), and 52.43% of precipitation from extremely wet days (R99p) were decreasing. The results of seasonal precipitation variability during Ethiopia’s JJAS (Kiremt) season found that the first three EOF modes accounted for 59.78% of the variability. Notably, EOF1, which accounted for 35.84% of this variability, showed declining rainfall patterns, particularly in northwestern and central-western Ethiopia. The findings of this study will help policymakers and stakeholders understand these changes and take necessary action, as well as build effective adaptation and mitigation measures in the face of climate change impacts.
Read full abstract