The flood depth in a structure is a key factor in flood loss models, influencing the estimation of building and contents losses, as well as overall flood risk. Recent studies have emphasized the importance of determining the damage initiation point (DIP) of depth-damage functions, where the flood damage is assumed to initiate with respect to the first-floor height of the building. Here we investigate the effects of DIP selection on the flood risk assessment of buildings located in Special Flood Hazard Areas. We characterize flood using the Gumbel extreme value distribution’s location (μ) and scale (α) parameters. Results reveal that average annual flood loss (AAL) values do not depend on μ, but instead follow an exponential decay pattern with α when damage initiates below the first-floor height of a building (i.e., negative DIP). A linear increasing pattern of the AAL with α is achieved by changing the DIP to the first-floor height (i.e., DIP = 0). The study also demonstrates that negative DIPs have larger associated AAL, thus contributing substantially to the overall AAL, compared to positive DIPs. The study underscores the significance of proper DIP selection in flood risk assessment.