The purpose of this paper is by using the hybrid iterative method to prove some strong convergence theorems for approximating a common element of the set of solutions to a system of generalized mixed equilibrium problems and the set of common fixed points for two countable families of closed and asymptotically relatively nonexpansive mappings in Banach space. The results presented in the paper improve and extend the corresponding results of Su et al. [Y.F. Su, H.K. Xu, X. Zhang, Strong convergence theorems for two countable families of weak relatively nonexpansive mappings and applications, Nonlinear Anal. 73 (2010) 3890–3906], Li and Su [H.Y. Li, Y.F. Su, Strong convergence theorems by a new hybrid for equilibrium problems and variational inequality problems, Nonlinear Anal. 72 (2) (2010) 847–855], Chang et al. [S.S. Chang, H.W. Joseph Lee, Chi Kin Chan, A new hybrid method for solving a generalized equilibrium problem solving a variational inequality problem and obtaining common fixed points in Banach spaces with applications, Nonlinear Anal. TMA 73 (2010) 2260–2270], Kang et al. [J. Kang, Y. Su, X. Zhang, Hybrid algorithm for fixed points of weak relatively nonexpansive mappings and applications, Nonlinear Anal. HS 4 (4) (2010) 755–765], Matsushita and Takahashi [S. Matsushita, W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in Banach spaces, J. Approx. Theory 134 (2005) 257–266], Tan et al. [J.F. Tan, S.S. Chang, M. Liu, J.I. Liu, Strong convergence theorems of a hybrid projection algorithm for a family of quasi- ϕ-asymptotically nonexpansive mappings, Opuscula Math. 30 (3) (2010) 341–348], Takahashia and Zembayashi [W. Takahashi, K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal. 70 (2009) 45–57] and Wattanawitoon and Kumam [K. Wattanawitoon, P. Kumam, Strong convergence theorems by a new hybrid projection algorithm for fixed point problem and equilibrium problems of two relatively quasi-nonexpansive mappings, Nonlinear Anal. Hybrid Systems 3 (2009) 11–20] and others.