Background/Objectives: Asthenozoospermia, characterized by reduced sperm motility, is a common cause of male infertility. Emerging evidence suggests that noncoding RNAs, particularly long noncoding RNAs (lncRNAs), play a critical role in the regulation of spermatogenesis and sperm function. Coding regions have a well-characterized role and established predictive value in asthenozoospermia. However, this study was designed to complement previous findings and provide a more holistic understanding of asthenozoospermia, this time focusing on noncoding regions. This study aimed to identify and prioritize variants in differentially expressed (DE) lncRNAs found exclusively in asthenozoospermic men, focusing on their impact on lncRNA structure and lncRNA–miRNA–mRNA interactions. Methods: Whole-genome sequencing (WGS) was performed on samples from asthenozoospermic and normozoospermic men. Additionally, an RNA-seq dataset from normozoospermic and asthenozoospermic individuals was analyzed to identify DE lncRNAs. Bioinformatics analyses were conducted to map unique variants on DE lncRNAs, followed by prioritization based on predicted functional impact. The structural impact of the variants and their effects on lncRNA–miRNA interactions were assessed using computational tools. Gene ontology (GO) and KEGG pathway analyses were employed to investigate the affected biological processes and pathways. Results: We identified 4173 unique variants mapped to 258 DE lncRNAs. After prioritization, 5 unique variants in 5 lncRNAs were found to affect lncRNA structure, while 20 variants in 17 lncRNAs were predicted to disrupt miRNA–lncRNA interactions. Enriched pathways included Wnt signaling, phosphatase binding, and cell proliferation, all previously implicated in reproductive health. Conclusions: This study identifies specific variants in DE lncRNAs that may play a role in asthenozoospermia. Given the limited research utilizing WGS to explore the role of noncoding RNAs in male infertility, our findings provide valuable insights and a foundation for future studies.
Read full abstract