Age-related mitochondrial dysfunction and associated oxidative stress may contribute to the development of osteoarthritis. The aim of this study was to identify hub genes associated with mitochondrial dysfunction in osteoarthritis (OA) patients, helping predict the risk of OA, and revealing the mechanism of OA progression. OA expression data and mitochondrial dysfunction genes were downloaded from GEO (GSE55235, GSE82107, and GSE114007) and GeneCard databases. The differentially expressed mitochondrial dysfunction genes (DEMDFGs) between OA and control samples were screened. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes pathways were analyzed for DEMDFGs. The hub genes were determined by WGCNA and LASSO regression analysis. ROC curves manifested the diagnostic efficacy of each hub gene. A nomogram model was constructed and validated to predict OA risk. The expression of hub genes in OA and normal chondrocytes was verified by external datasets, qRT-PCR and western blotting. A total of 31 DEMDFGs were identified, with 15 genes upregulated and 16 genes downregulated. GO functional enrichment analysis revealed that DEMDFGs were enriched in biological processes related to energy metabolism and cellular respiration. By employing weighted gene coexpression network analysis, we identified four distinct coexpression modules, among which the blue module exhibited the strongest correlation with OA. The intersection between DEMDFGs and this module yielded eight candidate genes. After LASSO analysis of the data, four hub genes (ACADL, CYBA, SLC19A2, and UCP2) were identified as potential biomarkers for OA. The expression levels of these four genes were externally validated in the GSE114007 dataset. And the biologically differential expression of these four genes has been verified in OA and normal chondrocytes. Moreover, the four hub genes had good sensitivity and specificity by ROC curve analysis, and the risk model constructed with these four genes showed promising performance. In conclusion, our study may provide novel mitochondrial dysfunction hub genes with potential clinical applications for understanding the pathology, diagnosis, and treatment of OA.