Although amino acid (AA) metabolism is linked to tumor progression and could serve as an attractive intervention target, its association with neuroblastoma (NB) is unknown. Based on AA metabolism-related genes, we established three NB subtypes associated with distinct prognoses and specific functions, with C1 and C2 having better outcomes. The C1 displayed enhanced metabolic activity and recruited metabolism-associated cells. The C2 exhibited an activated immune microenvironment and was more vulnerable to immunotherapy. The C3, characterized by cell cycle peculiarity, possessed a dismal prognosis and high frequency of gene mutations and was susceptible to chemotherapy. Furthermore, single-cell RNA sequencing analysis revealed that the C3-associated Scissor+ cell subpopulation was characterized by notorious functional states and orchestrated an immunosuppressive microenvironment. Additionally, we identified that ALK and BIRC5 contributed to the shorter lifespan of C3 and their corresponding inhibitors were potential interventions. In conclusion, we identified three distinct subtypes of NB, which help us foster individualized therapeutic strategies to improve the prognosis of NB.