Gender detection can be done in many ways, some of these ways by using image identification such as the process of image identification based on faces or image shapes, on the other hand image identification and detection can also be done based on text or written data. The usefulness of gender identification can be used in various aspects of life, ranging from greetings such as ladies and gentlemen, which will certainly make the person concerned feel more appreciated by the accuracy of the pronunciation of the name. This gender identification and detection process can be done by making class predictions on predetermined gender label classes. Of course, each name in various languages has different characteristics in identifying and representing each gender, as well as Indonesian names that have diversity and unique levels of variation. The purpose of this study is to test the results of the algorithm in classification based on class labels. The application of this detection uses two algorithms, namely Random Forest and Logistic Regression. Both of these algorithms can predict classes with perfect accuracy in 6 experimental data, then the results of 526 experimental data resulted in a final accuracy of 0.94 for logistic regression and 0.93 for random forest. The advantage with a thin difference in this case is in the Logistic Regression algorithm.
Read full abstract