High-temperature steam injection is a primary method for viscosity reduction and recovery in heavy oil reservoirs. However, due to the high mobility of steam, channeling often occurs within the reservoir, leading to reduced thermal efficiency and challenges in enhancing oil production. Foam fluids, with their dual advantages of selective plugging and efficient oil displacement, are widely used in steam-injection heavy oil recovery. Nonetheless, conventional foams tend to destabilize under high-temperature conditions, resulting in poor stability and suboptimal plugging performance, which hampers the efficient development of heavy oil resources. To address these technical challenges, this study introduces a foam system reinforced with Janus nano-graphite, a high-temperature stabilizer characterized by its small particle size and thermal resistance. The foaming agents used in the system are sodium α-olefin sulfonate (AOS), an anionic surfactant, and octadecyl hydroxylpropyl sulfobetaine (OHSB), a zwitterionic surfactant. Under conditions of 250 °C and 5 MPa, the foam system achieved a half-life of 47.8 min, 3.4 times longer than conventional foams. Janus nano-graphite forms a multidimensional network structure in the liquid phase, increasing internal friction and enhancing shear viscosity by 1.2 to 1.8 times that of conventional foams. Furthermore, the foam gel system demonstrated effective steam-channeling control in heterogeneous heavy oil reservoirs, particularly in reservoirs with permeability differentials ranging from 3 to 9. These findings suggest that the Janus nano-graphite reinforced foam system holds significant potential for steam-channeling mitigation in heavy oil reservoirs.