Abstract
To eliminate electromagnetic pollution, it is a challenging task to develop highly efficient electromagnetic shielding materials that integrate microwave absorption (MA) performance with high shielding capability and achieve tunability in shielding performance. Asymmetrically structured aero/organo/hydrogels with a progressively changing concentration gradient of liquid metal nanoparticles (LMNPs), induced by gravity, are prepared by integrating the conductive fillers Ti3C2Tx MXene and LMNPs into a dual-network structure composed of polyvinyl alcohol and cellulose nanofibers. Benefiting from the unique structure, which facilitates the absorption-reflection-reabsorption process of electromagnetic waves along with conductive fillers and the porous structure, three types of gels demonstrate efficient shielding performance. HPCML achieves a total shielding effectiveness (SET) of up to 86.9dB and a reflection shielding effectiveness (SER) of as low as 2.85dB. Especially, APCML, with an ultra-low reflection coefficient (R) of 6.4%, achieves compatibility between shielding performance and MA properties. The relationship between dispersing media (air, water, and glycerol/water) and the shielding performance of aero/organo/hydrogels is explored, thereby achieving modulation of the shielding performance of the gel system. The work has paved a clear path for integrating absorption and shielding capabilities into a composite material, thereby providing a prototype of a highly efficient shielding material with MA performance.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.